BRIEF COMMUNICATION

Préparation et Caractérisation d'une Série de Cyclohexaphosphates de Terres Rares: $Ln_2P_6O_{18} \cdot 10H_2O$

Ould Sidi Mohamed Elmokhtar et Mohamed Rzaigui

Laboratoire de Chimie des Matériaux, Faculté des Sciences, 7021 Zarzouna, Bizerte, Tunisie

Received May 1, 1995; in revised form May 18, 1995; accepted May 19, 1995

Six new cyclohexaphosphates with the general formula Ln_2 $P_6O_{18} \cdot 10H_2O$ with Ln = La, Ce, Pr, Sm, Er, and Yb are reported. They belong to two different structure types. The first type, common to three compounds, corresponds to Ln = La, Ce, and Pr, with an orthorhombic unit cell, Z = 2, and space group $P2_12_12$. The second type, common to three compounds also, corresponds to Ln = Sm, Er, and Yb, with a monoclinic unit cell, Z = 4, and space group $P2_1/a$. Synthesis and characterization by X-ray diffraction, IR absorption, and TA are given. © 1995 Academic Press, Inc.

INTRODUCTION

Bien que le nombre de cyclohexaphosphates des cations monovalents et bivalents ne cesse de s'accroître, celui des cyclohexaphosphates des cations trivalents reste encore limité. On n'en connaît à présent que sept composés:

—Les sels hydratés, $Cr_2P_6O_{18} \cdot 21H_2O$ (1), $Ce_2P_6O_{18} \cdot 10H_2O$ (2), $Nd_2P_6O_{18} \cdot 12H_2O$ (3) et $Yb_2P_6O_{18} \cdot 16H_2O$ (4), qui ont été préparés par voie humide et qui se caractérisent particulièrement par un degré d'hydratation élevé (entre 10 et 21 molécules d'eau par unité formulaire).

—Les sels anhydres, $Cr_2P_6O_{18}$ (5), $Ga_2P_6O_{18}$ (6) et $Al_2P_6O_{18}$ (7), qui ont été préparés par voie sèche.

A titre de contribution à l'étude de ces matériaux, nous rapportons dans le présent travail la préparation et la caractérisation d'une série de cyclohexaphosphates de terres rares $Ln_2P_6O_{18} \cdot 10H_2O$, avec Ln = La, Ce, Pr, Sm, Er et Yb.

PARTIE EXPERIMENTALE

Nous avons préparé les cyclohexaphosphates de lanthanides, en solution aqueuse selon la réaction de substitution suivante:

$$\text{Li}_6 P_6 O_{18} + 2 Ln Cl_3 \rightarrow 6 \text{LiCl} + Ln_2 P_6 O_{18}$$
.

- —Dans les proportions stoechiométriques de la réaction cidessus, on prépare une solution aqueuse saturée de $\text{Li}_6\text{P}_6\text{O}_{18}$ et de $Ln\text{Cl}_3$ (Fluka p.a.) avec Ln = La, Ce, Pr, Sm Er, et Yb. La solution obtenue est soumise à une évaporation lente à la température ambiante. Au bout de quelques jours, la formation des cristaux avec une taille convenable est observée. Les cristaux récoltés sont desséchés à l'air et soumis à une étude par:
- —Diffraction des RX à l'aide d'un diffractomètre poudre Philips PW 1729 travaillant à la longueur d'onde $K\overline{\alpha}$ du cuivre.
- —Absorption IR à l'aide d'un spectrophotomètre Perkin-Elmer IR 983G.
- —Analyse thermique à l'aide d'un "micro-ATD M5-Setaram" pour l'ATD et un "analyseur Setaram 2400" pour l'ATG.

RESULTATS ET DISCUSSION

Les cyclohexaphosphates que nous avons préparés, cristallisent en solution aqueuse avec deux différentes morphologies:

- —Cristaux prismatiques de $Ln_2P_6O_{18} \cdot 10H_2O$ avec Ln = La, Ce et Pr.
- —Cristaux parallélépipédiques de $Ln_2P_6O_{18} \cdot 10H_2O$ avec Ln = Sm, Er et Yb.

Tous ces cristaux sont stables à l'air. Ils sont peu solubles dans l'eau pure mais s'hydrolysent dans les acides concentrés.

Les spectres d'absorption IR de ces cyclohexaphosphates présentent:

- —des bandes larges autour de 3400 et 1670 cm⁻¹ caractéristiques de l'eau de cristallisation qui apparaît dans la formule chimique des composés étudiés.
- —des bandes de vibration de valence dont le nombre et la position entre 1300 et 600 cm $^{-1}$ sont caractéristiques d'un phosphate cyclique (8). En effet, dans un cycle P_6O_{18} , les vibrations de valence des groupements latéraux

TABLEAU~1 Principales Caractéristiques Cristallographiques des Cyclohexaphosphates $Ln_2P_6O_{18}\cdot 10H_2O$

	P					
Composés	$a \\ \alpha$	<i>b</i> β	c (Å) γ (°)	G. E.	Z	
La ₂ P ₆ O ₁₈ · 10H ₂ O	13,500(3)	13,102(2)	6,924(2)	P2 ₁ 2 ₁ 2	2	
$Ce_{2}P_{6}O_{18} \cdot 10H_{2}O$	13,466(2)	13,087(2)	6,902(1)	$P2_{1}^{1}2_{1}^{2}$	2	
$Pr_2P_6O_{18} \cdot 10H_2O$	13,453(4)	13,078(4)	6,896(2)	$P2_{1}2_{1}2$	2	
$Sm_2P_6O_{18}\cdot 10H_2O$	18,560(6)	13,570(5) 94,57(2)	11,394(5)	$P2_1/a$	4	
$Er_2P_6O_{18}\cdot 10H_2O$	18,315(8)	13,343(4) 94,46(3)	11,211(4)	$P2_1/a$	4	
$Yb_2P_6O_{18}\cdot 10H_2O$	18,290(9)	13,352(5) 94,39(4)	11,206(4)	$P2_1/a$	4	

($^{-}$ O—P—O $^{-}$) apparaissent à des fréquences élevées 1200 cm $^{-1}$ < $v_{\rm as}$ < 1350 cm $^{-1}$ et 1050 cm $^{-1}$ < $v_{\rm s}$ < 1200 cm $^{-1}$ et les vibrations de valence des groupements de liaison (POP) apparaissent spécifiquement en une bande large $v_{\rm as}$ autour de 980 cm $^{-1}$ et un doublet $v_{\rm s}$ entre 800 et 700 cm $^{-1}$.

La comparaison des spectres IR et celle des diffractogrammes de rayons X entre eux montre que ces composés correspondent à deux types de structures. Ceci est confirmé par leurs mailles que nous avons déterminées sur des monocristaux par la technique de Weissenberg et dont

TABLEAU 2
Depouillement Indexé des Diffractogrammes de Poudre de Ln₂P₆O₁₈·10H₂O; Ln: La, Ce, et Pr

$\rm La_2P_6O_{18}\cdot 10H_2O$			$Ce_2P_6O_{18} \cdot 10H_2O$				$\mathbf{Pr_2P_6O_{18}\cdot 10H_2O}$					
h k l	d _{cal} (Å)	d _{obs} (Å)	I/I _{max}	h k l	d _{cal} (Å)	d _{obs} (Å)	I/I _{max}	h k l	d _{cal} (Å)	d _{obs} (Å)	I/I _{max}	
1 1 0	9,40	9,41	42	1 1 0	9,38	9,39	47	110	9,38	9,38	36	
001	6,92	6,92	79	0 0 1	6,90	6,90	76	0 0 1	6,90	6,90	82	
200	6,75	6,75	44	200	6,73	6,73	64	200	6,73	6,73	42	
020	6,55	6,55	52	020	6,54	6,54	76	020	6,54	6,54	48	
0 1 1	6,12	6,12	16	2 1 0	5,99	5,98	89	2 1 0	5,98	5,97	51	
2 1 0	6,00	6,00	50	1 1 1	5,56	5,56	100	1 1 1	5,55	5,55	100	
1 1 1	5,57	5,58	100	2 2 0	4,69	4,69	28	2 2 0	4,69	4,69	30	
220	4,70	4,70	37	2 2 1	3,88	3,88	26	3 1 0	4,24	4,24	24	
3 1 0	4,26	4,26	23	2 3 0	3,66	3,66	24	1 3 0	4,15	4,15	24	
1 3 0	4,15	4,15	23	3 1 1	3,62	3,61	40	2 2 1	3,88	3,88	33	
2 2 1	3,89	3,89	29	1 3 1	3,55	3,56	71	3 2 0	3,70	3,70	24	
3 0 1	3,77	3,77	21	002	3,45	3,45	62	2 3 0	3,66	3,66	21	
2 3 0	3,67	3,67	25	3 2 1	3,26		81	3 1 1	3,61	3,61	51	
3 1 1	3,62	3,62	54	4 1 0	3,26	3,26		131	3,55	3,55	66	
1 3 1	3,56	3,56	50	1 1 2	3,24	3,24	50	0 0 2	3,45	3,45	30	
002	3,46	3,46	21	140	3,18	3,18	16	4 1 0	3,26	3,26	63	
0 4 0	3,27	3,27	67	0 2 2	3,05	3,05	26	1 1 2	3,24	3,24	50	
202	3,08	3,08	23	2 1 2	2,99	2,99	52	202	3,07	3,07	23	
0 2 2	3,06	3,06	29	4 1 1	2,95	2,95	54	0 2 2	3,05	3,05	36	
4 2 0	3,0	3,0	64	3 3 1	2,85	2,85	21	2 1 2	2,99	2,99	60	
0 4 1	2,96	2,96	54	2 2 2	2,78	2,78	31	4 1 1	2,95	2,95	53	
3 3 1	2,86	2,86	33	2 4 1	2,71	•		141	2,89	2,89	18	
2 2 2	2,79	2,79	44	0 3 2	2,71	2,71	14	3 3 1	2,85	2,85	25	
0 3 2	2,71)			4 3 0	2,67	2,67	33	2 2 2	2,78	2,78	45	
2 4 1	2,71	2,71	12	12	5 1 0	2,64	2,64	19	2 4 1	2,70		
4 3 0	2,67	2,67	35	150	2,57	2,57	16	0 3 2	2,70	2,70	18	
3 4 0	2,65	2,65	17	5 0 1	2,51	2,51	19	5 1 0	2,64	2,64	21	
150	2,57	2,57	17	-	•	,		150	2,57	2,57	19	

$\rm Sm_2P_6O_{18}\cdot 10H_2O$				$\mathrm{Er_2P_6O_{18}\cdot 10H_2O}$				$Yb_2P_6O_{18}\cdot 10H_2O$			
h k l	d _{cal} (Å)	d _{obs} (Å)	I/I _{max}	h k l	d _{cal} (Å)	d _{obs} (Å)	I/I _{max}	h k l	d _{cal} (Å)	d _{obs} (Å)	I/I _{max}
0 0 1	11,36	11,36	91	0 0 1	11,18	11,17	90	0 0 1	11,17	11,17	90
1 1 0	10,94	10,94	100	1 1 0	10,82	10,76	100	1 1 0	10,77	10,76	100
2 1 0	7,64	7,64	33	2 1 0	7,55	7,54	14	$-2 \ 0 \ 1$	7,34	7,35	10
-201	7,47	7,47	37	-2 0 1	7,36	7,35	16	2 0 1	6,81	6,81	14
201	6,91	6,90	38	2 0 1	6,2	6,81	28	0 2 0	6,68	6,67	18
0 2 0	6,79	6,79	40	0 2 0	6,72	6,68	18	-2 1 1	6,43	6,44	17
-2 1 1	6,54	6,55	51	-2 1 1	6,45	6,45	30	0 2 1	5,73	5,73	26
2 1 1	6,16	6,16	45	2 1 1	6,08	6,08	24	-3 1 0	5,53		20
0.21	5,83	5,83	37	0 2 1	5,76	5,73	12	-1 2 1	5,53	5,53	20
3 1 0	5,61	5,61	35	-1 2 1	5,55	5,53	18	0 1 2	5,15	5,16	12
0 1 2	5,24	5,24	38	0 1 2	5,16	5,16	10	$-2\ 2\ 1$	4,94]	4.04	16
-2 2 1	5,02]		25	-2 0 2	4,94	4,94	24	$-2 \ 0 \ 2$	4,94	4,94	
-202	5,02	5,02	35	1 1 2	4,87	4,87	16	1 1 2	4,87	4,87	30
1 1 2	4,95	4,95	40	3 1 1	4,83	4,83	18	-2 1 2	4,63	4,63	36
-401	4,41	4,41	65	202	4,61	4,61	22	400	4,56	4,56	18
3 2 1	4,15		5.4	-4 0 0	4,57	4,56	14	3 2 0	4,49	4,49	12
-312	4,15	4,15	54	3 2 0	4,51	4,49	12	1 3 0	4,32	4,32	44
2 3 1	3,78	3,78	68	4 1 0	4,32	4,32	40	3 2 1	4,09	4,09	18
3 3 0	3,65]	3,65	40	-3 2 1	4,27	4,26	16	2 3 1	3,73]	2.72	96
0 1 3	3,65		49	401	4,12	4,12	18	0 0 3	3,72 }	3,72	86
0 4 0	3,39	3,39	52 51	3 2 1	4,10	4,09	14	3 3 0	3,59]	2.50	16
-2 2 3	3,18]	3 19		2 3 1	3,74	3,73	60	0 1 3	3,59	3,59	16

TABLEAU 3
Depouillement Indexé des Diffractogrammes de Poudre de $Ln_2P_6O_{18} \cdot 10H_2O$; Ln: Sm, Er, et Yb

nous donnons, dans le tableau 1 les paramètres affinés par une méthode de moindres carrés à partir de données angulaires relevées des diffractogrammes de poudre effectués à vitesse lente $(1/4^{\circ} 2\Theta/\text{min})$. Les dépouillements indexés des diffractogrammes de poudre de ces cyclohexaphosphates sont donnés dans les tableaux 2 et 3.

51

38

51

3 3 0

1 1 3

203

0 4 0

1 4 0

2 1 3

1 2 3

3,61

3,47

3,36

3,36

3,30

3,26

3,17

3,59

3,47

3,36

3,28

3,26

3,17

18

12

10

18

20

21

3,18

3,04

2,98

-521

-601

-413

3 1 3

3,18

3,04]

3,04

2,98

L'analyse thermique différentielle (ATD), des cyclohexaphosphates que nous rapportons, montre qu'ils subissent tous des transformations thermiques entre 70 et 510°C. Les premiers pics d'ATD sont endothermiques et apparaissent à des températures comparables; ils correspondent à une déshydratation partielle. Celle-ci conduit à une phase amorphe qui persiste dans un domaine de température assez large (environ 300°C), à la fin duquel la déshydratation est achevée et laisse place à la cristallisation (pic exothermique) des polyphosphates $Ln(PO_3)_3$. Tous les composés des deux séries de cyclohexaphosphates rapportés présentent ce comportement thermique. A titre d'exemple, nous montrons dans la figure 1 les courbes d'ATD et d'ATG de $Ce_2P_6O_{18} \cdot 10H_2O$. Ce sel subit sous l'effet de la température une déshydratation partielle de 8.5H₂O par unité formulaire entre 80 et 161°C et une autre de 1.5H₂O entre 400 et 480°C:

-203

-412

-331

0 4 0

0 2 3

-141

-223

3,54]

3,54

3,46

3,34

3,25

3,16

3,13

3,54

3,46

3,34

3,25

3,16

3,13

12

16

14

14

28

18

$$\begin{array}{c} \text{Ce}_2\text{P}_6\text{O}_{18} \cdot 10\text{H}_2\text{O} \xrightarrow{-8.5\text{H}_2\text{O}} \text{Ce}_2\text{P}_6\text{O}_{18} \cdot 1,5\text{H}_2\text{O} \\ \text{Cyclohexaphosphate} & \text{Phase amorphe} \\ \xrightarrow{-1.5\text{H}_2\text{O}} \text{Ce}(\text{PO}_3)_3 \\ & \text{Polyphosphate} \end{array}$$

L'étude de cette évolution thermique par diffraction des RX (Fig. 2) et par spectroscopie IR (Fig. 3) montre que la déshydratation partielle conduit à une phase amorphe (Fig. 2b) dont la déshydratation totale est suivie de la cristallisation à 498°C d'un composé dont le spectre IR (Fig. 3c) présente des bandes caractéristiques d'un polyphosphate linéaire (9) et dont le diffractogramme des RX (Fig. 2c) est identique à celui du polyphosphate Ce(PO₃)₃ mis en évidence par ailleurs (10).

Du point de vue structural, les cyclohexaphosphates de la série orthorhombique $P2_12_12$ présentent un arrange-

FIG. 1. Courbes d'ATD et d'ATG de Ce₂P₆O₁₈ · 10H₂O.

ment atomique que nous avons déterminé sur un monocristal de $\text{Ce}_2\text{P}_6\text{O}_{18}\cdot 10\text{H}_2\text{O}$ (2). Ceux de la série monoclinique $P2_1/a$ présentent un autre type de structure que

FIG. 2. Diffractogrammes des RX de $Ce_2P_6O_{18} \cdot 10H_2O$ (a) et de ses produits de calcination à: $180^{\circ}C$ phase amorphe (b) et $500^{\circ}C$ $Ce(PO_3)_3$ (c).

FIG. 3. Spectres d'absorption IR de $Ce_2P_6O_{18} \cdot 10H_2O$ (a) et de ses produits de calcination à: $180^{\circ}C$ phase amorphe (b) et $500^{\circ}C$ $Ce(PO_3)_3$ (c).

nous avons également déterminée récemment sur un monocristal de $Er_2P_6O_{18} \cdot 10H_2O$ (11).

REFERENCES

- M. Bagieu-Beucher, M. T. Averbuch-Pouchot et M. Rzaigui, Acta Crystallogr. Sect. C 47, 1564 (1991).
- M. Bagieu-Beucher et M. Rzaigui, Acta Crystallogr. Sect. C 47, 1789 (1991).
- V. K. Trunov, N. N. Chudinov et L. A. Borodina, *Dokl. Akad. Nauk. SSSR* 300, 1375 (1988).
- M. Bagieu-Beucher et M. Rzaigui, Acta Crystallogr. Sect. C 48, 244 (1992).
- 5. M. Bagieu-Beucher et J. C. Guitel, Acta Crystallogr. Sect. B 33, 2529 (1977).
- 6. N. N. Chudinova, I. Grunze et L. S. Guzeeva, Izv. Akad. Nauk. SSSR Neorg. Mater. 23, 616 (1987).
- Z. Ya. Kanene, Z. A. Konstant et V. V. Krasnikov, Izv. Akad. Nauk SSSR Neorg. Mater. 21, 1552 (1985).
- 8. S. Abraham et G. Aruldhas, J. Raman Spectrosc. 22, 245 (1991).
- I. A. Tokman et E. U. Potaev, Izv. Akad. Nauk. SSSR Neorg. Mater. 12, 735 (1976).
- 10. I. L. Botto et E. J. Baran, J. Appl. Crystallogr. 12, 257 (1979).
- O. S. M. Elmokhtar, M. Rzaigui, M. Bagieu-Beucher et Y. Le Fur, Mater. Res. Bull. 30, 995 (1995).